30 research outputs found

    Learning three-dimensional flow for interactive aerodynamic design

    Get PDF
    We present a data-driven technique to instantly predict how fluid flows around various three-dimensional objects. Such simulation is useful for computational fabrication and engineering, but is usually computationally expensive since it requires solving the Navier-Stokes equation for many time steps. To accelerate the process, we propose a machine learning framework which predicts aerodynamic forces and velocity and pressure fields given a threedimensional shape input. Handling detailed free-form three-dimensional shapes in a data-driven framework is challenging because machine learning approaches usually require a consistent parametrization of input and output. We present a novel PolyCube maps-based parametrization that can be computed for three-dimensional shapes at interactive rates. This allows us to efficiently learn the nonlinear response of the flow using a Gaussian process regression. We demonstrate the effectiveness of our approach for the interactive design and optimization of a car body

    Bicuspid aortic valves undergo excessive strain during opening: A simulation study

    Get PDF
    ObjectiveThe objective of this study was to examine the influence of the morphologic characteristics of the bicuspid aortic valve on its disease progression by comparing the motion, stress/strain distribution, and blood flow of normal and stenotic tricuspid valves using simulation models.MethodsBicuspid, stenotic tricuspid with commissural fusion or thickened leaflet, and normal aortic valves were modeled with internal blood flow. Blood flow and the motion of aortic valve leaflets were studied using fluid–structure interaction finite element analysis, and stress/strain (curvature) distributions were calculated during the cardiac cycle. To mimic disease progression, we modified the local thickness of the leaflet where the bending stress was above a threshold.ResultsTransvalvular pressure gradient was greater in the bicuspid valve compared with the stenotic tricuspid valve with a similar valvular area. The bending strain (curvature) increased in both stenotic tricuspid and bicuspid valves, but a greater increase was observed in the bicuspid valve, and this was concentrated on the midline of the fused leaflets. During disease progression analysis, severity of the stenosis increased only in the bicuspid aortic valve model in terms of valvular area and pressure gradient.ConclusionsThe characteristic morphology of the bicuspid valve creates excessive bending strain on the leaflets during ventricular ejection. Such mechanical stress may be responsible for the rapid progression of this disease

    A Kinematic Approach for Efficient and Robust Simulation of the Cardiac Beating Motion

    Get PDF
    Computer simulation techniques for cardiac beating motions potentially have many applications and a broad audience. However, most existing methods require enormous computational costs and often show unstable behavior for extreme parameter sets, which interrupts smooth simulation study and make it difficult to apply them to interactive applications. To address this issue, we present an efficient and robust framework for simulating the cardiac beating motion. The global cardiac motion is generated by the accumulation of local myocardial fiber contractions. We compute such local-to-global deformations using a kinematic approach; we divide a heart mesh model into overlapping local regions, contract them independently according to fiber orientation, and compute a global shape that satisfies contracted shapes of all local regions as much as possible. A comparison between our method and a physics-based method showed that our method can generate motion very close to that of a physics-based simulation. Our kinematic method has high controllability; the simulated ventricle-wall-contraction speed can be easily adjusted to that of a real heart by controlling local contraction timing. We demonstrate that our method achieves a highly realistic beating motion of a whole heart in real time on a consumer-level computer. Our method provides an important step to bridge a gap between cardiac simulations and interactive applications

    SurfCuit: Surface-Mounted Circuits on 3D Prints

    No full text

    ACM Transactions on Graphics

    No full text
    This paper introduces "OmniAD," a novel data-driven pipeline to model and acquire the aerodynamics of three-dimensional rigid objects. Traditionally, aerodynamics are examined through elaborate wind tunnel experiments or expensive fluid dynamics computations, and are only measured for a small number of discrete wind directions. OmniAD allows the evaluation of aerodynamic forces, such as drag and lift, for any incoming wind direction using a novel representation based on spherical harmonics. Our datadriven technique acquires the aerodynamic properties of an object simply by capturing its falling motion using a single camera. Once model parameters are estimated, OmniAD enables realistic realtime simulation of rigid bodies, such as the tumbling and gliding of leaves, without simulating the surrounding air. In addition, we propose an intuitive user interface based on OmniAD to interactively design three-dimensional kites that actually fly. Various nontraditional kites were designed to demonstrate the physical validity of our model

    Guided exploration of physically valid shapes for furniture design

    Full text link

    Guided exploration of physically valid shapes for furniture design

    No full text
    Geometric modeling and the physical validity of shapes are tradi-tionally considered independently. This makes creating aestheti-cally pleasing yet physically valid models challenging. We propose an interactive design framework for efficient and intuitive explo-ration of geometrically and physically valid shapes. During any geometric editing operation, the proposed system continuously vi-sualizes the valid range of the parameter being edited. When one or more constraints are violated after an operation, the system gen-erates multiple suggestions involving both discrete and continuous changes to restore validity. Each suggestion also comes with an editing mode that simultaneously adjusts multiple parameters in a coordinated way to maintain validity. Thus, while the user focuses on the aesthetic aspects of the design, our computational design framework helps to achieve physical realizability by providing ac-tive guidance to the user. We demonstrate our framework on plank-based furniture design with nail-joint and frictional constraints. We use our system to design a range of examples, conduct a user study, and also fabricate a physical prototype to test the validity and use-fulness of the system
    corecore